Coagulation tests in 400 words or less

Making a blood clot involves three steps:

  1. blood vessel constriction
  2. platelet plug formation, and
  3. fibrin formation (also called coagulation).

There are lab tests that evaluate steps 2 and 3 (nobody talks much about poor step 1). Let’s look at the main tests that are used to evaluate step 3.

If you think back to the basics of the coagulation cascade, you might recall that there are two arms – an extrinsic arm and an intrinsic arm – which come together in the final common pathway, which ends up turning fibrinogen into fibrin. When somebody is bleeding, and you think it’s due to a coagulation problem (as opposed to a platelet problem), it’s helpful to know what part of the cascade is screwed up. That helps you figure out what’s wrong with the patient (is it hemophilia? or liver disease? or coumadin overdose?).

There are two main tests for evaluating the cascade: one for the extrinsic arm (the INR) and one for the intrinsic arm (the PTT). There are other tests too – but those will have to be for another post.

1. The INR

In the olden days, this test was called the prothrombin time (or PT), and it was extremely variable from lab to lab. Now, the lab applies a mathematical correction to the PT to make the results more consistent. The new name for the nice standardized PT is the INR, or “international normalized ratio.”

Whatever. What you do in this test is add thromboplastin (which acts like tissue factor, the thing that kicks off the coagulation cascade in vivo) to patient plasma, and wait to see how long it takes for fibrin to form. This test (for reasons we’ll have to discuss in another post, since we’ve limited this one to 400 words) measures the extrinsic pathway, which is that arm of the coagulation cascade that involves tissue factor, factor VII, and the final common pathway (X, V, II, and fibrinogen).

2. The PTT

The PTT, or partial thromboplastin time, is performed by adding just some phospholipid to the patient’s plasma and waiting to see how long it takes to form fibrin. It’s called the “partial thromboplastin” time because initially, it was found that by adding a part of thromboplastin to a test tube, you could activate fibrin formation. It turns out that the part of thromboplastin people were adding was just phospholipid, and that thromboplastin consists of both phospholipid and tissue factor. This test measures the intrinsic pathway, which is that arm of the cascade involving factors XI, IX, VIII and the final common pathway.

Whew. Okay, that was 431 words. Close enough.

Are HUS and TTP related?


Q. Is there a relationship between hemolytic-uremic syndrome and thrombotic thrombocytopenic purpura? I see them lumped together a lot. (more…)

DDAVP and von Willebrand disease

Q. I’m confused about DDAVP. Why do you use it in von Willebrand disease? I read that it raises VIII and VWF, but that doesn’t really make sense since the factor VIII is already there, there is no need to make more of it? (more…)

Antiphospholipid antibody syndrome

Q. Can you write a post about antiphospholipid syndrome? I could not find good source which explains its pathophysiology and laboratory results

A. First, before we get into the antiphospholipid syndrome, we need to talk about antiphospholipid antibodies. As you might expect from their name, antiphospholipid antibodies are autoantibodies in the patient’s plasma that are directed against various phospholipids (there are lots of phospholipid surfaces in the body – including the phospholipid surface upon which the coagulation factors interact). There are a bunch of different types of antiphospholipid antibodies, including anticardiolipin antibodies, anti-glycoprotein antibodies, and the so-called lupus anticoagulants (which were discovered in patients with lupus).

In addition to binding to various phospholipid surfaces in the body, these autoantibodies also just happen to bind to the phospholipid part of the PTT reagent (and sometimes, the PT reagent). Then there’s not enough usable reagent in the test tube, and the patient’s specimen doesn’t clot! The coagulation tests are therefore falsely prolonged.

Antiphospholipid antibodies are sometimes called “inhibitors” because they appear to inhibit coagulation in the test tube. But here’s a weird thing: in the body, they can be associated with thrombosis!

You may be asking yourself: how do you get these antiphospholipid antibodies? And are they dangerous?

It turns out there are different answers for different patients. Children, for example, sometimes develop antiphospholipid antibodies after an infection. In this setting, the risk of thrombosis is only slightly increased; it’s usually not a big deal clinically. Adults sometimes develop antiphospholipid antibodies as part of an autoimmune disorder like lupus (in fact, antiphospholipid antibodies – in whatever clinical setting – are often called “lupus inhibitors” because of this association). In these patients, the risk of thrombosis is moderately increased. Finally, elderly adults may develop antiphospholipid antibodies in association with drugs. This is virtually always a harmless event with no increased risk of thrombosis.

Okay, so here’s where we get to the antiphospholipid antibody syndrome part. This term is used when a patient with an antiphospholipid antibody has thromboses or pregnancy-related complications (like recurrent miscarriage, pre-term labor, or pre-eclampsia). This syndrome is a serious thing. In a small number of patients, the thromboses can be widespread, leading to multi-organ system damage and death. The term is reserved for patients who are symptomatic; you wouldn’t use the term in patients who have an antiphospholipid antibody but no symptoms.

So what would you do if you think your patient might have an antiphospholipid antibody? Well, you’d need to confirm this suspicion with laboratory tests. First, order a PTT (in fact, that’s how a lot of these patients get picked up – they present with an abnormally prolonged PTT in the face of clinical evidence of thrombosis).

Then, order up a mixing study. Remember what a mixing study is? You do this test when you have a patient with a prolonged PTT and you want to know why. It’s performed by taking the patient’s (probably abnormal) plasma and mixing it with some pooled (normal) plasma – then running the PTT on this new mixed sample.

If the new PTT value is within the normal range (if it “corrects”), then you know the pooled human plasma must have supplied something to the patient’s plasma to make it clot normally. The “something” is usually a coagulation factor that the patient is missing.

If the new PTT value is still abnormal (if it’s still prolonged, and doesn’t “correct”), then you know that even though you added a bunch of normal plasma to the mix, the patient’s plasma still couldn’t clot normally. There must be some other problem with the patient’s plasma. The “other problem” is usually an inhibitor.

One caveat: some antiphospholipid antibodies do not prolong the PTT. It all depends on the particular PTT reagent your lab is using (some reagents are just more easily swayed by the antiphospholipid antibodies). So if you really feel your patient may have an antiphospholipid antibody, you shouldn’t stop investigating that possibility just because the PTT comes back normal! There are plenty of fancy lab tests that can be done to detect antiphospholipid antibodies. Just call your friendly neighborhood pathologist and see what he/she has to offer.

Phospholipids, tissue factor and the platelet plug

plug

Q. I have a question about forming the platelet plug. Where are the phospholipids that get exposed, and how does platelet aggregation affect that? If this is in the subendothelium why weren’t they exposed upon ripping or whatever caused the endothelial damage? Also, what is tissue factor?

A. The phospholipids you’re referring to are part of the platelet cell membrane. The platelet membrane contains many different kinds of phospholipids on its surface. This is important because many of the coagulation factors (for example, the factor Xa-Va complex) require a phospholipid surface to exert their effects. During platelet aggregation, some of the phospholipids undergo important changes, making them more available to the coagulation factors.

Here is how a platelet plug is formed:

1. The endothelium gets ripped up, which exposes subendothelial proteins (like collagen) to the blood.

2. The platelets see these subendothelial proteins, and they stick to them using von Willebrand factor (this step is called platelet adhesion).

3. As the platelets adhese, they flatten out and release their granules (which have a lot of functions, one of which is to attract other platelets).

4. Other platelets come to the adhesion site, and they stick down onto the platelets that are already there (this step is called aggregation).

5. Now the platelet plug is formed. One cool thing about the platelet plug – in addition to its function of plugging the hole in the vessel – is that the platelet membrane provides a phospholipid surface which is essential for many of the coagulation factors. In fact, when platelets aggregate, certain phospholipids in their membranes become even more available to be used by the coagulation factors.

Tissue factor is a separate thing. It is the substance that initiates the whole coagulation cascade in vivo. It’s present in different areas of the body (in the subendothelium, in some inflammatory cells, and perhaps even in little locked-up microparticles in the blood). It is not present in active form in the blood until it’s needed for coagulation. So when the endothelium is ripped up (or when inflammatory cells decide to release it, or when the little microparticles get a signal to open up), tissue factor is exposed to the blood, and it binds to factor VIIa, and the cascade proceeds along the extrinsic pathway.

A different kind of plug: the image of Claes Oldenberg’s giant three-way plug at the Tate was taken by jovike (http://www.flickr.com/photos/49503078599@N01/54082836/), under cc license.

What’s the deal with ADAMTS 13?

Adam

Q. We learnt about a pretty rare disorder called thrombotic thrombocytopenic purpura (TTP) in which super-huge von Willebrand Factor (vWF) multimers are made which lead to occlusion of microcirculation. (more…)